Display Program Rules

There are five files associated with displaying program rules: TMCategories.PHP, TMSelection.PHP, FormPageObject.PHP, RulePageObject.PHP, and RuleEditorObject.PHP.

TMCategories.PHP is responsible for displaying the selectors in the left frame. It passes the following variables to TMSelection.PHP via its combo box controls: $server, $year, $owner, $run, $sim, $category, $subcategory, $group, $rule.

TMSelection.PHP is responsible for displaying the program rule values in the right frame. It looks at the $category variable passed to it by TMCategories.PHP and decides whether it wants to create a CFormPage object or a CRulePage object in order to display the rule:

if (strlen(strstr($category,"Forms")) > 0) {

include("Include/FormPageObject.php");

$thisPage = new CFormPage;

} else {

include "Include/RuleEditorObjects.PHP";

include "Include/RulePageObject.PHP";

$thisPage = new CRulePage;

}
This document focuses on what happens when TMSelection.PHP creates a CRulePage object.
A. Pre-conditions:

TMSelection.PHP is always called initially by TMCategories.PHP (in the left pane, the user selects a rule, clicks the “Edit” button, and submits the form “categories”). Afterwards, TMCategories.PHP may also be called by itself (in the right pane, the user clicks the “Save” button, the “borrowFrom” button, or the “blockPaste” link, which submits the form “rules”.)

When TMSelection.PHP is called by TMCategories.PHP, it starts off with the following global variables: $server, $year, $owner, $run, $sim, $category, $subcategory, $group, $rule. If the “Show grouped rules” checkbox is checked, which it is by default, the variable $showGroup will also be a global variable, with a value of “1.”

When it is called by itself, TMCategories starts off with the following global variables:

1) all the variables from TMCategories.PHP (because it saved them as hidden input elements the first time around)

2) the CRulePage variables $actionCode, $blockPaste, $borrowFrom

3) for StateArrayGroup rules, the CRulePage variable $state

4) for non-variable list rules, the CRuleEditor variables $numRows, $numCols, and $cell_0_0 through $cell_m_n

5) for variable list rules, the CRuleEditor variables $firstTime, $variables[], $schema, $table, $variable, and $conversion

B. HTML Display: Form Elements:

The form for all program rules contains the following:

1) Hidden input elements

actionCode

blockPaste

borrowFrom

showGroup

server

year

owner

run

sim

cagetory

group

rule

2) for StateArrayGroup rules, the state selector “state”

3) A table containing controls for program rule values. See the following two sections for specific details.

4) A “Save” button. For non-variable list rules, the onClick command is set to “return saveThis()”. For variable list rules, the onClick command is set to “return saveVarList()”. The JavaScript functions “saveThis()” and “saveVarList()” are defined in the CRuleEditor and CVariableListEditor functions “echoJSFunctions()”.

C. HTML Display: Non-Variable List Rules:

For all program rule types except state array group rules, all program rule values are displayed in a grid of controls with row and column headers appropriate to that rule. For state array group rules, the grid of controls will correspond to a particular state, which is determined by a state selector that is separate from the grid.

The table containing the grid of controls will always consist of the following between the <TABLE> and </TABLE> tags:

1) Hidden inputs named numRows and numCols which have as their values the number of rows and columns in the grid

<INPUT TYPE=“hidden” NAME=“NumRows” VALUE=“1”>

<INPUT TYPE=“hidden” NAME=“NumCols” VALUE=“6”>

2) Row and column headers, if they exist

<TH>Alabama</TH>

<TH>First Income Limit</TH>

3) A grid of controls containing program rule values that adhere to the following conventions:

a) The name of the control is cell_m_n where m is the 0-based row index and n is the 0-based column index of the cell.

<INPUT NAME=“cell_0_6”>

b) The control is of type

<TEXTAREA> if the page is in blockpaste mode;

 <SELECT> (combo box) if the page is not in blockpaste mode and the program rule has a value enumerator;

<INPUT TYPE=“text”> if the page is not in blockpaste mode and the program rule does not have a value enumerator.

c) For text and textarea controls, the onChange property is set to call the data validation function ctrlContainsValidValue(), which checks to see if the value of a control is between a mininum and maximum value. If the minimum and maximum values are “none,” the function simply tests to see if the value of the control is numeric.

<INPUT NAME=”cell_0_6” TYPE=“text”

onChange=“return ctrlContainsValidValue(this, “0,” “4”)>

<INPUT NAME=”cell_0_7” TYPE=“text”

onChange=“return ctrlContainsValidValue(this, “none,” “none”)>

D. HTML Display: Variable List Rules
For Variable List rules, the program rule table contains six controls:

1) A hidden input named “firstTime” which is used to indicate whether the values to be displayed should be taken from the database or from the submitted form.

2) A “multiple” combo box named “variables[],” each element of which is one of the variables contained by the Variable List rule:

a) The value of each element is a concatenated string of schema, table, variable, conversion, and conversion enumerated value, separated by periods, e.g.

“CPS1998.AdultMonthly.MonthlyEarnings.3.Keep As Monthly”

b) The text of each element is the variable name, followed in parantheses by the schema and table if the schema and table are not “Current,” followed by the conversion enumerated value, e.g.

“Monthly Earnings (CPS1998.AdultMonthly, Keep As Monthly)”

“BenefitsReceived (Keep As Monthly)

3) Combo boxes named “schema,” “table,” “variable,” and “conversion” that allow the user to select a new variable. All but the last refresh the page automatically whenever the user changes them.

In addition, there are two links, “Remove Selected Variables” and “Add Selected Variable” which, when clicked, call Javascript functions to add and remove elements to and from the “variables[]” combo box. These functions are defined in CVariableListEditor::echoJavaScriptFunctions().

E. CRulePage:

The CRulePage object inherits from CTrimPage, and like all Trim pages, it overrides the $this‑>body() function of its base class in order to get its work done.

function body() {

$this‑>setRuleVars();

$this‑>setRuleEditor();

$this‑>showRuleHeader();

if ($this‑>actionCode == 1)

$this‑>ruleEditor‑>saveValues();

$this‑>showRuleForm();

$this‑>showBorrowFromForm();

$this‑>ruleEditor‑>echoJSFunctions();

}
CRulePage farms off the complicated task of displaying and saving the actual matrix of cells containing program rule values to an object it contains, $ruleEditor. However, it assumes responsibility for displaying everything else: the rule name, the rule description, the block paste link, the form containing the program rule cells, and the “borrow from” form.

1) The function setRuleVars() sets the scalar variables $ruleType and $description. The variable $ruleType can have the following values: “National,” “State,” “StateGroup”, “Array,” “ArrayGroup”, “StateArray,” “StateArrayGroup”, and “VariableList.” If the variable $showGroup is not equal to “1,” then the groupname of the rule will be ignored and $ruleType will be set to “National,” “State,” “Array,” or “StateArray.”

2) The function setRuleEditor() creates the object variable $ruleEditor. Depending on the value of $ruleType, the object variable $ruleEditor may be of class CNationalEditor, CNationalGroupEditor, CStateEditor, CStateGroupEditor, CArrayEditor, CArrayGroupEditor, CStateArrayEditor, CStateArrayGroupEditor, and CVariableListEditor. However, once CRulePage has created the object, CRulePage doesn’t care what type of object it is because it just calls the CRuleEditor base class virtual functions saveValues(), displayValues(), and echoJSFunctions().

2) The function showRuleHeader() shows

a) the rule or group name

b) the rule description if the program rule is not a group or if $showGroup is not equal to “1”

c) the “Go To Block Paste” | “Return To Regular” links if the program rule is not a variable list rule. If the page is already in blockpaste mode, showRuleHeader() echos the Javascript functions required for blockpaste functionality.

3) If $actionCode = 1, the page saves the program rule values to the database via a call to the saveValues() function of its member object $ruleEditor:

$this‑>ruleEditor‑>saveValues();
4) The function showRuleForm() creates a form with the following inputs:

a) Hidden inputs for the variables passed to it by TMCategories.PHP: $server, $year, $owner, $run, $sim, $category, $subcategory, $group, $rule;

b) Hidden inputs for the variables it passes to itself: $actionCode, $blockPaste, $borrowFrom;

c) A state selector, if and only if $ruleType is StateArrayGroup;

d) A bank of text, textarea, or combo box inputs containing program rule values. The function does this by calling

$this->ruleEditor->displayValues();

e) A “Save” button.

5) The function showBorrowFromForm() outputs the form containing a combo box allowing users to select another sim to borrow rules from.

6) The page calls

$this‑>ruleEditor‑>echoJSFunctions();

F. CRuleEditor Base Class:

All the global variables from TMSelection.PHP are visible to the CRuleEditor object. For example, the CRuleEditor object looks at the global variables $blockPaste and $borrowFrom to determine what type of controls to create and which simulation’s rule values should be used to populate the cells. This simplifies the construction of the object, as the only variable that needs to be passed to it is $con.

The CRuleEditor object has three “public” functions which get called by the object containing it, CRulePage:

saveValues()

displayValues()

echoJSFunctions()

All of these functions are virtual, but the base class has a standard definition for displayValues() and echoJSFunctions() that is used by all the non-variable list classes.

G. CRuleEditor Derived Classes (Non-Variable List)

The base class “public” function displayValues() used by all the non variable-list classes calls two “pure” virtual functions which are defined only by the derived classes:

setRuleDefs()

loadValues()

These two functions set several variables and fill several arrays, which displayValues() then uses in order to generate the HTML for the bank of controls.

Therefore, each derived class must override three virtual functions, only one of which is “public”: setRuleDefs(), loadValues() and saveValues().

1) The setRuleDefs function sets five variables which are used by the displayValues() function:

$numRows

$numCols

$rowHeaders[]

$colHeaders[]

$colDefs[][]

$rowHeaders[] is an array containing the names of the 56 states for State, StateGroup, and StateArray rules, and enumerated values or 1-based indices for Array, ArrayGroup, and StateArrayGroup rules.

$colHeaders[] is an array containing enumerated values or 1-based indices for StateArray rules, and the program rule names for NationalGroup, StateGroup, ArrayGroup, and StateArrayGroup rules.

$colDefs[][] is a multi-dimensional associative array indexed by first by column second by the following keys:

$colDefs[][“ctrlType”]

$colDefs[][“minVal”]

$colDefs[][“maxVal”]

$colDefs[][“valueDefs”][]

$colDefs[][“ctrlType”] has three possible values: “text,” “textArea,” and “comboBox.”

$colDefs[][“valueDefs”][] is an associative array with two keys, “code” and “description.” It holds enumerated values for terms where there is a value enumerator.

If a row or column does not have a header, enumerated values, or minimum and maximum values, these are simply left as empty strings or empty arrays.

2) The loadValues() function reads in program rule values from the database and saves them to a two-dimensional array

$values[][]

This array is indexed by row and column and is used by the displayValues() function.

3) The saveValues() function uses an “eval” call to sequentially read in the global variables $cell_0_0 through $cell_m_n and set the temp variable $value equal to that value. It then saves $value to the database, with the SQL call varying depending on what type of rule it is.

for ($i = 0; $i < $this->numRows; $i++) {

for ($j = 0; $j < $this->numCols; $j++) {

eval ("global \$cell_$i_$j;");

eval ("\$value = \$cell_$i_$j;");

H. CVariableListEditor:

CVariableListEditor overrides the four base class functions loadValues(),displayValues(),

saveValues(), and echoJSFunctions().

1) The function loadValues() reads in values from the database if the page is being called for the first time or if the “borrowFrom” form has just been submitted. Otherwise, it reads in values from the form variable $variables[]. Either way, it stores these values in the class variable $values[][].

$values[][] is a two-dimensional, associative array indexed first by the sequence of the variables, then by the following keys:

“schema”

“table”

“variable”

“conversion”

“desc”

“conversion” refers to the numerical value from 0 to 8 stored in the CTD.VariableList column ConversionType.

 “desc” refers to the enumerated value of the conversion type, e.g. “Keep As Annual.”

2) The function displayValues() calls loadValues() and two other functions, ruleSelector() and ruleEditor(). The ruleSelector() function uses the $values[][] array to display the “variables[]” combo box. The ruleEditor() function displays the combo boxes “schema,” “table,” “variable,” and “conversion,” which allow the user to select a new variable to add to the “variables[]” combo box.

3) The function saveValues() saves the values from the form variable $variables[] to the database. If there are no values in $variables[], it adds a blank row to the database.

4) The value echoJSFunctions() echos the following Javascript functions:

selectAllVariables()

saveVarList()

removeVars()

addVar()

The onClick event handler for the “Save” button needs to call saveVarList() rather than the usual saveThis() because the save function needs to call selectAllVariables() before submitting the form. Otherwise, any variables that were not selected at the time the form was submitted would not be displayed after the page refreshed.

Likewise, the onChange event handlers for the “schema” and “table” selectors also need to call selectAllVariables() (as well as set the hidden input “firstTime” equal to “0”) before calling selectorSubmitForm().

